Multi-objective Optimization and its Engineering Applications
نویسنده
چکیده
Many practical optimization problems usually have several conflicting objectives. In those multi-objective optimization, no solution optimizing all objective functions simultaneously exists in general. Instead, Pareto optimal solutions, which are “efficient” in terms of all objective functions, are introduced. In general we have many Pareto optimal solutions. Therefore, we need to decide a final solution among Pareto optimal solutions taking into account the balance among objective functions, which is called “trade-off analysis”. It is no exaggeration to say that the most important task in multi-objective optimization is trade-off analysis. Consequently, the methodology should be discussed in view of how it is easy and understandable for trade-off analysis. In cases with two or three objective functions, the set of Pareto optimal solutions in the objective function space (i.e., Pareto frontier) can be depicted relatively easily. Seeing Pareto frontiers, we can grasp the trade-off relation among objectives totally. Therefore, it would be the best way to depict Pareto frontiers in cases with two or three objectives. (It might be difficult to read the trade-off relation among objectives with three dimension, though). In cases with more than three objectives, however, it is impossible to depict Pareto forntier. Under this circumstance, interactive methods can help us to make local trade-off analysis showing a “certain” Pareto optimal solution. A number of methods differing in which Pareto optimal solution is to be shown, have been developed. This paper discusses critical issues among those methods for multi-objective optimization, in particular applied to engineering design problems.
منابع مشابه
EMCSO: An Elitist Multi-Objective Cat Swarm Optimization
This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...
متن کاملPareto Optimal Design Of Decoupled Sliding Mode Control Based On A New Multi-Objective Particle Swarm Optimization Algorithm
One of the most important applications of multi-objective optimization is adjusting parameters ofpractical engineering problems in order to produce a more desirable outcome. In this paper, the decoupled sliding mode control technique (DSMC) is employed to stabilize an inverted pendulum which is a classic example of inherently unstable systems. Furthermore, a new Multi-Objective Particle Swarm O...
متن کاملSolving a new bi-objective model for a cell formation problem considering labor allocation by multi-objective particle swarm optimization
Mathematical programming and artificial intelligence (AI) methods are known as the most effective and applicable procedures to form manufacturing cells in designing a cellular manufacturing system (CMS). In this paper, a bi-objective programming model is presented to consider the cell formation problem that is solved by a proposed multi-objective particle swarm optimization (MOPSO). The model c...
متن کاملApplication of Multi-objective Optimization for Optimization of Half-toroidal Continuously Variable Transmission
Among different goals defined in vehicle design process, fuel consumption (FC) is one of the most important objectives, which significantly has taken into account lately, both by the customers and vehicle manufacturers. One of the significant parameters which impacts the vehicle FC is the efficiency of vehicle's power train. In this paper, a half-toroidal continuously variable transmission (CVT...
متن کاملDiscrete Multi Objective Particle Swarm Optimization Algorithm for FPGA Placement (RESEARCH NOTE)
Placement process is one of the vital stages in physical design. In this stage, modules and elements of circuit are placed in distinct locations according to optimization basis. So that, each placement process tries to influence on one or more optimization factor. In the other hand, it can be told unequivocally that FPGA is one of the most important and applicable devices in our electronic worl...
متن کاملSolution of Multi-Objective optimal reactive power dispatch using pareto optimality particle swarm optimization method
For multi-objective optimal reactive power dispatch (MORPD), a new approach is proposed where simultaneous minimization of the active power transmission loss, the bus voltage deviation and the voltage stability index of a power system are achieved. Optimal settings of continuous and discrete control variables (e.g. generator voltages, tap positions of tap changing transformers and the number of...
متن کامل